Smart Technology and Integration, How It’s Changing Our Lives
Each week alone, an estimated 1.3 million people move into cities, driving urbanization on an unstoppable scale.
By 2040, about two-thirds of the world’s population will be concentrated in urban centers. Over the decades ahead, 90 percent of this urban population growth is predicted to flourish across Asia and Africa.
Already, 1,000 smart city pilots are under construction or in their final urban planning stages across the globe, driving forward countless visions of the future.
As data becomes the gold of the 21st century, centralized databases and hyper-connected infrastructures will enable everything from sentient cities that respond to data inputs in real time, to smart public services that revolutionize modern governance.
Connecting countless industries — real estate, energy, sensors and networks, transportation, among others — tomorrow’s cities pose no end of creative possibilities and stand to completely transform the human experience.
In this blog, we’ll be taking a high-level tour of today’s cutting-edge urban enterprises involved in these three areas:
- Hyperconnected urban ecosystems that respond to your data
- Smart infrastructure and construction
- Self-charging green cities
Let’s dive in!
Smart Cities that Interact with Your Data
Any discussion of smart cities must also involve today’s most indispensable asset: data.
As 5G connection speeds, IoT-linked devices and sophisticated city AIs give birth to trillion-sensor economies, low latencies will soon allow vehicles to talk to each other and infrastructure systems to self-correct.
Even public transit may soon validate your identity with a mere glance in any direction, using facial recognition to charge you for individualized travel packages and distances.
As explained by Deloitte Public Sector Leader Clare Ma, “real-time information serves as the ‘eye’ for urban administration.”
In most cities today, data is fragmented across corporations, SMEs, public institutions, nonprofits, and personal databases, with little standardization.
Yet to identify and respond to urban trends, we need a way of aggregating multiple layers of data, spanning traffic flows, human movement, individual transactions, shifts in energy usage, security activity, and almost any major component of contemporary economies.
Only through real-time analysis of information flows can we leverage exponential technologies to automate public services, streamlined transit, smarter security, optimized urban planning and responsive infrastructure.
And already, cutting-edge cities across the globe are building centralized data platforms to combine different standards and extract actionable insights, from smart parking to waste management.
Take China’s Nanjing, for instance.
With sensors installed in 10,000 taxis, 7,000 buses and over 1 million private vehicles, the city aggregates daily data across both physical and virtual networks. After transmitting it to the Nanjing Information Center, experts can then analyze traffic data, send smartphone updates to commuters and ultimately create new traffic routes.
Replacing the need for capital-intensive road and public transit reconstruction, real-time data from physical transit networks allow governments to maximize value of preexisting assets, saving time and increasing productivity across millions of citizens.
But beyond traffic routing, proliferating sensors and urban IoT are giving rise to real-time monitoring of any infrastructural system.
Italy’s major rail operator Trenitalia has now installed sensors on all its trains, deriving real-time status updates on each train’s mechanical condition. Now capable of calculating maintenance predictions in advance of system failure, transit disruptions are becoming a thing of the past.
Los Angeles has embedded sensors in 4,500 miles worth of new LEDs (replacing previous streetlights). The minute one street bulb malfunctions or runs low, it can be fixed near-immediately, forming part of a proactive city model that detects glitches before they occur.
And Hangzhou, home to e-commerce giant Alibaba, has now launched a “City Brain” project, aiming to build out one of the most data-responsive cities on the planet.
With cameras and other sensors installed across the entire city, a centralized AI hub processes data on everything from road conditions to weather data to vehicular collisions and citizen health emergencies.

Overseeing a population of nearly 8 million residents, Hangzhou’s City Brain then manages traffic signals at 128 intersections (coordinating over 1,000 road signals simultaneously), tracks ambulances en-route and clears their paths to hospitals without risk of collision, directs traffic police to accidents at record rates, and even assists city officials in expedited decision-making. No more wasting time at a red light when there is obviously no cross traffic or pedestrians.
Already, the City Brain has cut ambulance and commuter traveling times by half. And as reported by China’s first AI-partnered traffic policeman Zheng Yijiong, “the City Brain can detect accidents within a second” allowing police to “arrive at [any] site [within] 5 minutes” across an urban area of over 3,000 square miles.
But beyond oversight of roads, traffic flows, collisions and the like, converging sensors and AI are now being used to monitor crowds and analyze human movement.
Companies like SenseTime now offer software to police bureaus that can not only identify live faces, individual gaits and car license plates, but even monitor crowd movement and detect unsafe pedestrian concentrations.
Some researchers have even posited the use of machine learning to predict population-level disease spread through crowd surveillance data, building actionable analyses from social media data, mass geolocation and urban sensors.
Yet aside from self-monitoring cities and urban AI ‘brains,’ what if infrastructure could heal itself on-demand. Forget sensors, connectivity and AI — enter materials science.
Self-Healing Infrastructure
The U.S. Department of Transportation estimates a $542.6 billion backlog needed for U.S. infrastructure repairs alone.
And as I’ve often said, the world’s most expensive problems are the world’s most profitable opportunities.
Enter self-healing construction materials.
First up, concrete.
In an effort to multiply the longevity of bridges, roads, and any number of infrastructural fortifications, engineers at Delft University have developed a prototype of bio-concrete that can repair its own cracks.
Mixed in with calcium lactate, the key ingredients of this novel ‘bio-concrete’ are minute capsules of limestone-producing bacteria distributed throughout any concrete structure. Only when the concrete cracks, letting in air and moisture, does the bacteria awaken.
Like clockwork, the bacteria begins feeding on surrounding calcium lactate as it produces a natural limestone sealant that can fill cracks in a mere three weeks — long before small crevices can even threaten structural integrity.
As head researcher Henk Jonkers explains, “What makes this limestone-producing bacteria so special is that they are able to survive in concrete for more than 200 years and come into play when the concrete is damaged. […] If cracks appear as a result of pressure on the concrete, the concrete will heal these cracks itself.”
Yet other researchers have sought to crack the code (no pun intended) of living concrete, testing everything from hydrogels that expand 10X or even 100X their original size when in contact with moisture, to fungal spores that grow and precipitate calcium carbonate the minute micro-cracks appear.
But bio-concrete is only the beginning of self-healing technologies.
As futurist architecture firms start printing plastic and carbon-fiber houses, engineers are tackling self-healing plastic that could change the game with economies of scale.
Plastic not only holds promise in real estate on Earth; it will also serve as a handy material in space. NASA engineers have pioneered a self-healing plastic that may prove vital in space missions, preventing habitat and ship ruptures in record speed.
The implications of self-healing materials are staggering, offering us resilient structures both on earth and in space.
One additional breakthrough worth noting involves the magic of graphene.
Perhaps among the greatest physics discoveries of the century, graphene is composed of a 2D honeycomb lattice over 200X stronger than steel, yet remains an ultra-thin one atom thick.
While yet to come down in cost, graphene unlocks an unprecedented host of possibilities, from weather-resistant and ultra-strong coatings for existing infrastructure, to multiplied infrastructural lifespans. Some have even posited graphene’s use in the construction of 30 km tall buildings.
And it doesn’t end there.
As biomaterials and novel polymers will soon allow future infrastructure to heal on its own, nano- and micro-materials are ushering in a new era of smart, super-strong and self-charging buildings.

Revolutionizing structural flexibility, carbon nanotubes are already dramatically increasing the strength-to-weight ratio of skyscrapers.
But imagine if we could engineer buildings that could charge themselves… or better yet, produce energy for entire cities, seamlessly feeding energy to the grid.
Self-Powering Cities
As exponential technologies across energy and water burst onto the scene, self-charging cities are becoming today’s testing ground for a slew of green infrastructure pilots, promising a future of self-sufficient societies.
In line with new materials, one hot pursuit surrounds the creation of commercializable solar power-generating windows.
In the past few years, several research teams have pioneered silicon nanoparticles to capture everyday light flowing through our windows. Little solar cells at the edges of windows then harvest this energy for ready use.
Scientists at Michigan State, for instance, have developed novel “solar concentrators.” Capable of being layered over any window, these solar concentrators leverage non-visible wavelengths of light — near infrared and ultraviolet — pushing them to those solar cells embedded at the edge of each window panel.
Rendered entirely invisible, such solar cells could generate energy on almost any sun-facing screen, from electronic gadgets to glass patio doors to reflective skyscrapers.
And beyond self-charging windows, countless future city pilots have staked ambitious goals for solar panel farms and renewable energy targets.
Take Dubai’s “Strategic Plan 2021,” for instance.
Touting a multi-decade Dubai Clean Energy Strategy, Dubai aims to gradually derive 75 percent of its energy from clean sources by 2050.
With plans to launch the largest single-site solar project on the planet by 2030, boasting a projected capacity of 5,000 megawatts, Dubai further aims to derive 25 percent of its energy needs from solar power in the next decade.
And in the city’s “Strategic Plan 2021,” Dubai aims to soon:
- 3D-print 25 percent of its buildings;
- Make 25 percent of transit automated and driverless;
- Install hundreds of artificial “trees,” all leveraging solar power and providing the city with free WiFi, info-mapping screens, and charging ports;
- Integrate passenger drones capable of carrying individuals to public transit systems;
- And drive forward countless designs of everything from underwater bio-desalination plants to smart meters and grids.

A global leader in green technologies and renewable energy, Dubai stands as a gleaming example that any environmental context can give rise to thriving and self-sufficient eco-powerhouses.
But Dubai is not alone, and others are quickly following suit.
Leading the pack of China’s 500 smart city pilots, Xiong’an New Area (near Beijing) aims to become a thriving economic zone powered by 100 percent clean electricity.
And just as of this December, 100 U.S. cities are committed and on their way to the same goal.
Cities as Living Organisms
As new materials forge ahead to create pliable and self-healing structures, green infrastructure technologies are exploding into a competitive marketplace.
Aided by plummeting costs, future cities will soon surround us with self-charging buildings, green city ecosystems, and urban residences that generate far more than they consume.
And as 5G communications networks, proliferating sensors and centralized AI hubs monitor and analyze every aspect of our urban environments, cities are fast becoming intelligent organisms, capable of seeing and responding to our data in real time.


Board of Directors | Board of Advisors | Strategic Leadership
Please keep me in mind as your Executive Coach, openings for Senior Executive Engagements, and Board of Director openings. If you hear of anything within your network that you think might be a positive fit, I’d so appreciate if you could send a heads up my way. Email me: [email protected] or Schedule a call: Cliff Locks
#BoardofDirectors #BoD #artificialintelligence #AI #innovation #HR #executive #business #CXO #CEO #CFO #CIO #executive #success #work #follow #leadership #corporate #office #Biotech Cleantech #entrepreneur #coaching #businessman #professional #excellence #development #motivation Contributors: Peter Diamandis and Clifford Locks #InvestmentCapitalGrowth
Imagine making fuel, plastics, and concrete out of thin air.
Imagine making fuel, plastics, and concrete out of thin air.

That’s the promise of Direct Air Capture (DAC), a technology that fundamentally disrupts our contemporary oil economy.
Mimicking what already occurs in nature, DAC essentially involves industrial photosynthesis, harnessing the power of the sun to draw carbon directly out of the atmosphere.
This captured carbon can then be turned into numerous consumer goods, spanning fuels, plastics, aggregates and concrete (as I write this blog, I’m even wearing shoes 3D-printed from carbon).
A vital component of every life form on Earth, carbon stands at the core of our manufacturing, energy, transportation, among the world’s highest-valued industries.
And in the coming 10 years, sourcing carbon out of the air will become more cost-effective than carbon sourced from the ground (oil).
By 2030, the carbon capture and utilization (CCU) industry is expected to reach $800 billion. And by 2050, that number will surge more than 4X to a $4 Trillion market, according to McKinsey.
But let’s start with the basics…
Direct Air Capture: The What and the How
Carbon capture might seem like old news, usually written off as prohibitively expensive and unrealistic.
But DAC is fast changing the rules of the game, capable of sucking massive quantities of carbon dioxide out of the air, anywhere, at any time.
First-generation CCS (Carbon Capture and Storage) used a technology called Point Source Capture to take CO2 directly from smoke stacks and pump it into the ground for permanent sequestration.
Yet this process required massive industrial plants tethered to CO2 emission points, allowing far less flexibility.
DAC, by contrast, can be deployed anywhere, completely independent of emission patterns.
This is because CO2 gets distributed evenly within the atmosphere. There is as much CO2 above Los Angeles, California as rests above the Patagonian Desert. And for the purposes of DAC, this equal distribution means decimated transportation costs.
So how does it work? While a few different techniques have been developed, the most common involves industrial-scale fans that transmit ambient air through a filter. This latter component then uses a chemic adsorbent (which holds molecules in the form of a thin film on its surface) to produce a pure, storable stream of carbon dioxide.
But beyond the value of carbon itself, DAC could serve as a negative carbon technology, helping us lock away atmospheric CO2 while birthing an abundance of material products.
Today’s Biggest Players
Companies like Global Thermostat, Carbon Engineering, and Climeworks are now on the cutting edge of DAC technologies, capturing record quantities of CO2 from the atmosphere.
Just last October (2018), a National Academy of Sciences (NAS) report even stated that DAC could be feasible enough to reach worldwide adoption in just the next 3 years. As estimated by NAS, once the price of CO2 extraction dips below $100-150 per ton of carbon, the air-captured commodity will be economically competitive with traditionally sourced oil.
Since the report’s release, DAC has gained tremendous traction. Bill Gates-backed Carbon Engineering recently closed a $68 million series C financing round and now claims it can achieve CO2 extraction at as little as $94 per ton, at scale.
Or take Swiss startup Climeworks, which has recently deployed its third DAC plant after receiving north of $35 million in funding from the Zürcher Kantonal Bank.
Yet another contender, Global Thermostat has already demonstrated that its technology can remove CO2 for a mere $120 per ton at its facility in Huntsville, Alabama. And at scale, the startup predicts it could achieve DAC for as little as $50 a ton.
Demonstrating the sheer range of use cases, Global Thermostat has now closed deals with industrial giants from Coca-Cola—which aims to use DAC to source CO2 for its carbonated beverages—to Exxon Mobile. In just the next few years, this latter oil and gas giant intends to pioneer a DAC-to-fuel business on the back of Global Thermostat’s techniques.
Iterating upon the basic method of DAC explained above, Carbon Engineering’s approach involves a potassium hydroxide solution. This reacts with CO2 to form potassium carbonate, which—in the process—removes a certain amount of carbon dioxide from the air passing over it.
While air remnants containing less CO2 are released, the final solution is then treated to separate out captured carbon dioxide.
Once carbon capture is complete, processes like DAC-derived fuels can begin.
Direct Air Capture Fuels
The know-how for converting air into fuel has been around for a hundred years or more. After all, it’s the way all plant life grows. But until now, there was no cheap and abundant source of CO2.
For millions of years, plant species have captured CO2, converting it to sugar via photosynthesis. In succession, plants have then either burned the sugar directly or converted sugars to hydrocarbon fuels via high pressure within the Earth’s surface over long periods of time.
Theoretically, this is not hard to do. The process requires two steps: first, electrolysis separates hydrogen from H2O. Secondly, the Sabatier reaction (1897) and Fischer-Tropsch process (1925) together result in bonding of the carbon molecule in CO2 to hydrogen molecules to thereby create hydrocarbon fuels— just like the ones we purchase at gas stations or use in our stoves.
Essentially, DAC uses solar (or other renewable energy sources) to capture carbon dioxide from the air, bond it with hydrogen molecules and create burnable fuels molecularly identical to natural gas and diesel.
In other words, the process mimics a battery in its method of energy storage. It takes energy from the sun and stores it in a permanently exploitable fuel source.
Very soon, we will indeed be able to make fuel out of thin air.
Imagine a world powered by carbon-neutral fuels. The advantage here, in part, is that DAC fuels use the same infrastructural elements—pipes, gas stations, and the like—that already support our modern fossil fuel economy. Yet even using legacy distribution systems, DAC eliminates the environmental toll.
Perhaps most exciting, DAC could equalize fuel costs across the globe, democratizing immediate access. Remote or oil-distant regions, which currently suffer high fuel prices given long-distance transit, will be able to source their own fuel, regardless of geography. And not only will DAC fundamentally redefine geopolitics, but it will be an economic boon to nations like Australia, no longer in need of international oil shipments.
But captured CO2-to-fuel is just one of many exciting examples of DAC’s extraordinary potential.
Commercial Use Cases Are Limitless
In just the next few decades, we are about to manufacture a significant percentage of the world’s plastics and building materials out of the air.
Take concrete, for instance. One of the most widely used materials on Earth, second only to water, concrete now accounts for a whopping 7 percent of global CO2 emissions.
Yet as it turns out, injecting CO2 into cement as it’s being manufactured strengthens the mixture and produces a far sturdier end-product. This process also permanently sequesters CO2 into cement, largely offsetting the material’s high footprint.
Up until now, however, we had no cheap and abundant source of CO2 to achieve this. Yet with current DAC technologies and soon-to-come iterations, suppliers can now produce far more robust cement at lower costs.
NRG COSIA Carbon XPRIZE finalist CarbonCure is one such enterprise. Having raised more than $9 million, the team is now developing its latest application of DAC to create carbon-neutral concrete.
Yet another XPRIZE finalist, Carbon Upcycling UCLA, utilizes CO₂ to create a product dubbed CO₂NCRETE. A low-carbon concrete-equivalent material, CO₂NCRETE™ has achieved a CO₂ footprint approximately 50 percent lower than that of traditional concrete. And the product is just as viable.
Or take Carbon Capture Machine, which can create carbon basic solids usable in a variety of applications. First, proprietary CCM technology dissolves CO2 from any source in dilute alkali and creates a building material.
Diving quickly into technicality: the carbonate solution reacts with readily and abundantly available calcium (Ca++) and magnesium (Mg++) brines to selectively precipitate CaCO3 (Precipitated Calcium Carbonate, PCC) and MgCO3·3H2O (Precipitated Magnesium Carbonate, PMC).
In success, these conversion products are carbon-negative, high-value feedstocks in great demand across countless legacy industries. PCCs, for instance, are currently used in paper-making, plastics, paints, and adhesives, while future applications in cement and concrete are now under development.
Cement PMC, on the other hand, is an entirely new product that can be cast into final shapes and thermally cured at low temperature. As a consequence, the solid undergoes spontaneous reaction bonding to form rigid solids (blocks, panels, tiles, etc.).
But beyond Earth-bound utility, DAC could hold countless vital applications in extra-planetary ventures.
With a 98 percent CO2 atmosphere, Mars could be an ideal target for DAC, not to mention an optimal source of needed commodities. To successfully colonize and establish a society on Mars, DAC could help us produce everything from fuel and food to 3D printed replacement parts and construction tools.
Even today, SpaceX’s intended Mars strategy largely relies on the conversion of CO2 into methane for rocket fuel. Meanwhile, NASA is hosting a $1 million CO2 Conversion Centennial Challenge, inviting teams to devise carbon utilization technologies that turn CO2 into sugar molecules on Mars.
Final Thoughts
Direct Air Capture will soon allow us to sequester gigatons of CO2 from the atmosphere, yielding material abundance for countless everyday products. By making CO2 a vital part of our economy, we can begin to derive incredible value from one of our principal climate change agents, currently emitted as a “waste” product.
And applications of captured carbon are near-limitless. Whether for fuel on Mars, smart city infrastructural equipment, or everyday plastic commodities, our atmosphere’s carbon reserves are free for the taking and will fundamentally transform our global energy and materials economy.
Welcome to the age of carbon-derived abundance.

Board of Directors | Board of Advisors | Strategic Leadership
Please keep me in mind as your Executive Coach, openings for Senior Executive Engagements, and Board of Director openings. If you hear of anything within your network that you think might be a positive fit, I’d so appreciate if you could send a heads up my way. Email me: [email protected] or Schedule a call: Cliff Locks
#BoardofDirectors #BoD #artificialintelligence #AI #innovation #HR #executive #business #CXO #CEO #CFO #CIO #executive #success #work #follow #leadership #corporate #office #Biotech Cleantech #entrepreneur #coaching #businessman #professional #excellence #development #motivation Contributor: Peter Diamandis and Clifford Locks #InvestmentCapitalGrowth
Forging a >50% renewable electric economy by 2030 is your company ready?
Forging a >50% renewable electric economy by 2030 is your company ready?
By 2030, more than 50 percent of the U.S. economy will run on electricity derived from renewables. What are the implications as we shift the U.S. and global energy economies away from fossil fuels?
For the first time ever, our harnessing of renewable energy has surpassed domestic reliance on coal, a critical milestone for democratizing energy.
Current technological advances in wind, solar, hydrogen, geothermal, hydroelectric power, nuclear and localized grids are forging a future of cheap, abundant, and ubiquitous energy.
Today’s blog I’ll be exploring the ways in which we are fast approaching an all-electric, renewable energy economy. Two areas of disruption take center stage:
- How we produce energy;
- How we utilize energy.
Let’s dive in!
Energy Production
Simply put, our world in the coming decades will need a lot more energy than it does today.
The industrial and technological booms of emerging nations are bringing online billions of high-demand energy consumers, now just as voracious as their American and European counterparts. Already, China’s energy consumption is expected to double by 2030, and India is right on its tail.
In our ‘linear and scarcity-minded’ world of fossil fuels, these skyrocketing trends present a problem: more demand equals more environmental devastation, higher prices, and increased geopolitical tensions as the ‘haves’ supply the ‘have-nots.’
Luckily, a ‘global and exponential mindset’ offers an alternative. Rather than slicing the pie into thinner and thinner slices, let’s just bake more pies.
Namely, higher-priced hydrocarbon fuels drive market incentives to invest heavily in alternative energy sources. Advances in batteries, solar, wind, geothermal, and even nuclear fusion offer humanity a future in which we can viably switch from coal, petroleum, and natural gas to renewables, and eventually to an all-electric economy.
Between 2010 and 2017, utility-scale solar photovoltaic capital costs in the U.S. have fallen by a factor of five, from $5-6 per kilowatt to a mere $1-2. And the only constraint to plummeting prices is technology, not resource availability.
In today’s fossil fuels market, by far the greatest cost is the commodity itself, i.e. coal, oil, or natural gas. But the opposite is true for renewables. Think of the commodities needed: sun, wind, (to a large degree) nuclear power, and water are all free.
All costs borne by producers lie in building and maintaining the infrastructure to harness power from these renewable energies. As a result, the greatest business opportunities surrounding these sources are primarily unlocked by improving the technology.
And the rate of technological advancement is accelerating.
Companies like GE are investing hundreds of millions of dollars in microgrids and smart grids, which will make electricity far more accessible to larger populations. Several companies in solar energy, such as SunRun, Sun Power and Sunnova Energy Corp, are vastly improving the efficiency of solar cells, whether in production, installation or manufacturing.
But how is our energy used?
Energy Utilization
Today, transportation represents roughly 29 percent of the U.S.’s total energy use. Yet almost none of that energy use is currently electric.
Herein lies the greatest growth opportunity for U.S. electrification. As advancements in renewable energy drive down the price of electricity, the market will respond by capitalizing on this electrification.
While only 20.5 percent of the U.S. economy is currently electrified, that number has the potential to jump to more than 50 percent by 2030.
But how will this happen?
Because of exciting innovations across the three greatest energy-guzzling sectors: transportation, commercial and residential, and industrial.
While these sectors represent electrification potential to varying degrees, here’s one route by which we might reach a 50 percent renewable energy economy over the next decade:
Shifting the Transportation Sector (29% of Current Energy Use) to Renewable Electricity:
Electric vehicles (EVs) are cheaper per mile, require less maintenance, demonstrate greater reliability, and have far fewer moving parts (<200 in electric cars vs. >1,000 parts in gas-fueled cars) than internal combustion engine-driven vehicles.
Ultimately, when a product is cheaper and better, consumers switch. Let’s take a look.

The price per mile of an EV is already four times cheaper than that of its gasoline-fueled counterpart. (An EV’s average operating cost is 3.72¢ per mile vs. that of a gasoline-fueled vehicle, which stands at 16.00¢ per mile.)
However, EVs represented only 2 percent of the U.S. personal car market in 2018. And while we are about to witness the massive electrification of personal and commercial vehicles over the coming decade, passenger vehicles represent only 63 percent of all transportation energy use. The remaining 37 percent consists of air and freight.
Nonetheless, companies and governments alike are achieving extraordinary progress in making these systems run fully on electricity from renewable energy sources.
Aircraft: This year’s Paris Air Show witnessed the introduction of electric commercial airplanes, as EasyJet announced its partnership with startup Wright Electric to roll out a fleet of electric planes (capable of traveling a little less than 300 miles).
Trucking: In the large-scale ground transit arena, Tesla boasts that its electric trucks can save $100,000 per year on fuel costs.

And as projects like Hyperloop and the Boring Company reduce our dependency on air travel for long distance human and freight, exponential technologies like VR will soon begin to indirectly disrupt our need to physically travel in the first place.
Shifting the Industrial Sector (32% of Current Energy Use) to Renewable Electricity:
Visit www.gilmanindustries.com for onsite Hydrogen production solutions
While still constituting a minority, electricity represents a more significant chunk, 17 percent, of the industrial sector’s energy use.
Beyond the obvious suspects — turning on lights, running air conditioners, etc. — several industrial processes use electricity on a tremendous scale.
Take aluminum production, a relatively modern invention dating back only to 1886, which requires a high-voltage electric current to extract aluminum from bauxite ore. Currently, the best smelters use around 13 kilowatt-hours to produce one kilogram of aluminum. (For reference, it takes approximately 29 kilowatt-hours to power the average American home for one day.)
Or look at the creation of synthetic gas, not to mention that of carbon-based polymers and aggregates, both requiring high amounts of energy in the form of electric current.
Tomorrow’s advanced-materials economy will require a much higher proportion of energy to take the form of electricity.
Shifting the Commercial & Residential Sector (38% of Current Energy Use) to Renewable Electricity:
Lastly, almost half of the commercial and residential sector’s energy use is already electric. And the reasons for this perhaps speaks best to the economic argument for electrification with renewables.
It used to be that almost all of this sector’s energy was derived from fossil fuels. But as the price of electricity has continued to decline, home adoption rates of electricity have increased accordingly, as reported by the U.S. Energy Information Administration.
In the EU, it’s mission critical to change the energy mix, once you look at whom is supplying the EU with energy imports. You’ll get a better idea.
And as renewables and converging technologies continue to drive down cost, commercial and residential use of electricity will only soar.
Calculating for the Total
If we assume that energy use ratios by sector – transportation, residential and commercial, and industrial — remain relatively constant, our economy is already on target for over 50 percent electrification from renewables in the next decade.
Our trajectory to a 66 percent electric transportation industry by 2030 alone puts us at a 19.3 percent electric total economy.
Next up: if another 30 percent of the industrial sector becomes electrified — requiring a conservative annual increase of 3 percent — that adds another 7.1 percent to our aggregate economy’s electrification.
And already today, the residential and commercial sector is well on its way to full electrification. With the continued rate of transition, a whopping 62 percent of this sector will be electrified using renewables in just ten years. That represents 23.6 percent of the U.S.’s total energy use.
Added together, these massive shifts represent a 50 percent renewable-electric economy, and a 110 percent increase in U.S. electrification in just 10 years.
Welcome to a future driven by electrons generated from renewable sources of energy.
What are the implications to your business? Your industry? What will the impacts be on global geopolitics, our families, and our environment?

Board of Directors | Board of Advisors | Strategic Leadership
Please keep me in mind as your Executive Coach, openings for Senior Executive Engagements, and Board of Director openings. If you hear of anything within your network that you think might be a positive fit, I’d so appreciate if you could send a heads up my way. Email me: [email protected] or Schedule a call: Cliff Locks
leadership #business #CXO #CEO #CFO #BofD #Entrepreneur #WSJ #VC #socialmedia #Diversity #BigData #CorpGov #elearning #Marketing #Periscope #Recruiting #technology #startup #HRTech #Recruitment #sales #Healthcare #cloud #work #motivation Contributor: Peter Diamandis #InvestmentCapitalGrowth
Five year forecast for transportation and energy, each is poised to disrupt major players and birth entirely new business models
Five year forecast for transportation and energy, each is poised to disrupt major players and birth entirely new business models
On the heels of energy abundance, we are additionally witnessing a new transportation revolution, which sets the stage for a future of seamlessly efficient travel at lower economic and environmental costs. In just five days, the Sun provides Earth with an energy supply exceeding all proven reserves of oil, coal, and natural gas. Capturing just 1 part in 8,000 of this available solar energy would allow us to meet 100 percent of our energy needs. This article includes a discussion of Hydrogen, which can be used both as a feedstock and an energy carrier.
Autonomous cars drive 1 billion miles on U.S. roads. Then 10 billion.
Alphabet’s Waymo alone has already reached 10 million miles driven in the U.S. The 600 Waymo vehicles on public roads drive a total of 25,000 miles each day, and computer simulations provide an additional 25,000 virtual cars driving constantly. Since its launch in December, the Waymo One service has transported over 1,000 pre-vetted riders in the Phoenix area.
With more training miles, the accuracy of these cars continues to improve. Since last year, Waymo has decreased its disengagement rate by 50 percent, now achieving a rate of just one human intervention per 11,017 self-driven miles. Similarly, GM Cruise has improved its disengagement rate by 321 percent since last year, trailing close behind with only one human intervention per 5,025 miles self-driven.
- Autonomous taxis as a service in top 20 U.S. metro areas.
Along with its first quarterly earnings released last week, Lyft recently announced that it would expand its Waymo partnership with the upcoming deployment of 10 autonomous vehicles in the Phoenix area. While individuals previously had to partake in Waymo’s “early rider program” prior to trying Waymo One, the Lyft partnership will allow anyone to ride in a self-driving vehicle without a prior NDA.
Strategic partnerships will grow increasingly essential between automakers, self-driving tech companies, and rideshare services. Ford is currently working with Volkswagen, and Nvidia now collaborates with Daimler (Mercedes) and Toyota. Just last week, GM Cruise raised another $1.15 billion at a $19 billion valuation as the company aims to launch a ride-hailing service this year.
They’re going to come to the Bay Area, Los Angeles, Houston, other cities with relatively good weather. In every major city within five years in the U.S. and in some other parts of the world, you’re going to see the ability to hail an autonomous vehicle as a ride.
- Cambrian explosion of vehicle formats.
If you look today at the average ridership of a taxi, a Lyft, or an Uber, it’s about 1.1 passengers plus the driver. So, why do you need a large four-seater vehicle for that?
Small electric and Hydrogen, autonomous pods that seat as few as two people will begin to emerge, satisfying the majority of ride-hailing demands we see today. At the same time, larger communal vehicles will appear, such as Uber Express, that will undercut even the cheapest of transportation methods — buses, trams and the like. Finally, last-mile scooter transit (or simply short-distance walks) might connect you to communal pick-up locations.
By 2024, an unimaginably diverse range of vehicles will arise to meet every possible need, regardless of distance or destination.
- Drone delivery for lightweight packages in at least one U.S. city.
Wing, the Alphabet drone delivery startup, recently became the first company to gain approval from the Federal Aviation Administration (FAA) to make deliveries in the U.S. Having secured approval to deliver to 100 homes in Canberra, Australia, Wing additionally plans to begin delivering goods from local businesses in the suburbs of Virginia.
The current state of drone delivery is best suited for lightweight, urgent-demand payloads like pharmaceuticals, thumb drives, or connectors. And as Amazon continues to decrease its Prime delivery times—now as speedy as a one-day turnaround in many cities—the use of drones will become essential.
- Robotic factories drive onshoring of U.S. factories… but without new jobs.
The supply chain will continue to shorten and become more agile with the re-onshoring of manufacturing jobs in the U.S. and other countries. Naam reasons that new management and software jobs will drive this shift, as these roles develop the necessary robotics to manufacture goods. Equally as important, these robotic factories will provide a more humane setting than many of the current manufacturing practices overseas.
Top 5 Energy Breakthroughs (2019-2024)
- First “1 cent per kWh” deals for solar and wind signed.
Ten years ago, the lowest price of solar and wind power fell between 10 to 12 cents per kilowatt hour (kWh), over twice the price of wholesale power from coal or natural gas.
Today, the gap between solar/wind power and fossil fuel-generated electricity is nearly negligible in many parts of the world. In G20 countries, fossil fuel electricity costs between 5 to 17 cents per kWh, while the average cost per kWh of solar power in the U.S. stands at under 10 cents.
Spanish firm Solarpack Corp Technological recently won a bid in Chile for a 120 MW solar power plant supplying energy at 2.91 cents per kWh. This deal will result in an estimated 25 percent drop in energy costs for Chilean businesses by 2021.
We will see the first unsubsidized 1.0 cent solar deals in places like Chile, Mexico, the Southwest U.S., the Middle East, and North Africa, and we’ll see similar prices for wind in places like Mexico, Brazil, and the U.S. Great Plains.
- Solar & Wind will reach >15 percent of U.S. electricity, and begin to drive all growth.
Just over 8 percent of energy in the U.S. comes from solar and wind sources. In total, 17 percent of American energy is derived from renewable sources, while a whopping 63 percent is sourced from fossil fuels, and 17 percent from nuclear.
Last year in the U.K., twice as much energy was generated from wind than from coal. For over a week in May, the U.K. went completely coal-free, using wind and solar to supply 35 percent and 21 percent of power, respectively. While fossil fuels remain the primary electricity source, this weeklong experiment highlights the disruptive potential of solar and wind power that major countries like the U.K. are beginning to emphasize.
Solar and wind are still a relatively small part of the worldwide power mix, only about 6 percent. Within five years, it’s going to be 15 percent in the U.S. and more than close to that worldwide, “We are nearing the point where we are not building any new fossil fuel power plants.”
- It will be cheaper to build new solar/wind/batteries than to run on existing coal.
Last October, Northern Indiana utility company NIPSCO announced its transition from a 65 percent coal-powered state to projected coal-free status by 2028. Importantly, this decision was made purely on the basis of financials, with an estimated $4 billion in cost savings for customers. The company has already begun several initiatives in solar, wind, and batteries.
NextEra, the largest power generator in the U.S., has taken on a similar goal, making a deal last year to purchase roughly 7 million solar panels from JinkoSolar over four years. Leading power generators across the globe have vocalized a similar economic case for renewable energy.
- ICE car sales have now peaked. All car sales growth will be electric and hydrogen.
While electric vehicles (EV) have historically been more expensive for consumers than internal combustion engine-powered (ICE) cars, EVs are cheaper to operate and maintain. The yearly cost of operating an EV in the U.S. is about $485, less than half the $1,117 cost of operating a gas-powered vehicle.
As Hydrogen fueling stations continue to expand, especially with the Evolve onsite technology, the upfront costs of Hydrogen vehicles will decline until a long-term payoff calculation is no longer required to determine which type of car is the better investment. Hydrogen will become the obvious choice.
The Hydrogen Council envisages that by 2030, 230–250TWh of surplus solar and wind energy could be converted to hydrogen. It suggests hydrogen could provide almost a fifth of total energy consumed by 2050, and cut carbon emissions by about six billion tonnes compared to today. Moreover, it will tackle the air pollution that is the scourge of so many industrialized nations.
Many experts believe that internal combustion engine (ICE)-powered vehicles peaked worldwide in 2018 and will begin to decline over the next five years, as has already been demonstrated in the past 5 months. At the same time, EVs and Hydrogen vehicles are expected to quadruple their market share to 1.6 percent this year.
- New storage technologies will displace Li-ion batteries for tomorrow’s most demanding applications.
Lithium ion batteries have dominated the battery market for decades, I anticipates new storage technologies will take hold for different contexts. Flow batteries and Hydrogen production, which can collect and store solar and wind power at large scales, will supply our electrical grids.
Final Thoughts
Major advancements in transportation and energy technologies will continue to converge over the next five years. A case in point, Tesla’s recent announcement of its “robotaxi” fleet exemplifies the growing trend towards joint priority of sustainability and autonomy.
On the connectivity front, 5G and next-generation mobile networks will continue to enable the growth of autonomous fleets, many of which will soon run on renewable energy sources. This growth demands important partnerships between energy storage manufacturers, automakers, self-driving tech companies, and ridesharing services.
In the eco-realm, increasingly obvious economic advantages will catalyze consumer adoption of autonomous hydrogen and electric vehicles. In just five years, I predict that self-driving rideshare services will be cheaper than owning a private vehicle for urban residents. And by the same token, plummeting renewable, including clean hydrogen production energy costs will make these fuels far more attractive than fossil fuel-derived from electricity.
Today, Americans spend over 84 billion hours a year behind the steering wheel. Yet as universally optimized AI systems cut down on traffic, aggregate time spent in vehicles will decimate, while hours in your (or not your) car will be applied to any number of activities as autonomous systems steer the way. All the while, sharing an electric vehicle will cut down not only on your carbon footprint but on the exorbitant costs swallowed by your previous SUV. How will you spend this extra time and money? What new natural resources will fuel your everyday life? Please share your thoughts in the comments.

Please keep me in mind as your Executive Coach, openings for Senior Executive Engagements, Advisory Board, and Board of Director openings. If you hear of opportunities within your network that you think might be a positive fit, I’d so appreciate if you could send a heads up my way. Email me: [email protected] or Schedule a call: Cliff Locks
#innovation #Venture #Executive #CXO #CEO #CFO #BofD Contributors: Ramez Naam and Peter Diamandis